Berry Cultivation in Cutover Peatlands in Estonia: Agricultural and Economical Aspects

KAIRE VAHEJÕE1, TAIRI ALBERT2, MERRIT NOORMETS2, KADRI KARP3, TAIMI PAAL3, MARGE STARAST3 AND RANDO VÄRNIK1

1Institute of Economics and Social Sciences, Estonian University of Life Sciences, Kreuzwaldi 1, Tartu 51014, Estonia
2Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreuzwaldi 1, Tartu 51014, Estonia
3Institute of Forestry and Rural Engineering, Estonian University of Life Sciences, Kreuzwaldi 5, Tartu, 51014, Estonia

Abstract

The aim of the study is to examine if lowbush blueberry (Vaccinium angustifolium) cultivation on cutover peatlands is as profitable as half-highbush blueberry (Vaccinium angustifolium x Vaccinium corymbosum) and strawberry (Fragaria x ananassa) cultivation on mineral soil. In addition it is examined if, due to land use changes, the abandoned peat excavation areas can be turned into a profitable land resource. Current experiments tested the suitability of a former pine bog area abandoned after peat mining for the cultivation of lowbush blueberry. Wild berry cultivation on those fields is rather a new agricultural branch and growers need efficient producing technologies. As data about the nutrient needs of blueberry on cutover peat fields are still lacking, a fertilizing trial was carried out. In the fertilization study the yield was used as an agrotechnical indicator to evaluate the viability of peat soils usage. A benefit-cost ratio analysis was used to assess the profitability of blueberry cultivation. A questionnaire survey was conducted to gather data on the costs for establishing a plantation, its maintenance, harvesting and marketing costs. It was found that on cutover peat land the fertilized blueberries produced 200 to 535 g berries per plant. The economic analysis showed that the benefit-cost ratio for lowbush blueberry on cutover peat areas was 227 %. The benefit-cost ratio for half-highbush blueberry and strawberry cultivation on the mineral soil was significantly lower at 116% and 43%, respectively. The highest profit came from lowbush blueberry and was 6,299 EUR ha⁻¹, whereas the lowest was for strawberry at 2,117 EUR ha⁻¹ from cultivation on mineral soil. The profit from half-highbush blueberry cultivation on mineral soil was 4,855 EUR ha⁻¹. Finally, it can be concluded that lowbush blueberry cultivation allows to put cutover peat lands into use, and lowbush blueberry production on those areas is economically profitable.

Key words: Vaccinium angustifolium, land use, land abandonment, peat mining, fertilization, yield, economic analyses, benefit-cost ratio

Introduction

Estonian economic and agricultural situation has undergone major changes during the last ten to fifteen years. The period from the end of the Soviet regime till Estonian entrance to the European Union in May 2004 can be handled as a process of transition from the liberal economic policy of the 1990s to the EU Common Agricultural Policy (CAP). During these years several peat production companies went bankrupt and ended their activities. At present there are 20,000 ha cutover peat lands that are exploited by 60 different enterprises (Orru and Paal 2007). Ilmets (2003) estimated that the drained peatland areas in Estonia, including bogs, fens and transitional bogs covered a total area of 1,033, 000 ha. The same author reports that about 70% of Estonian peatlands are drained or influenced by drainage to such an extent that they no longer allow peat accumulation (Ilmets et al. 1995). Damaged by human areas are mostly not rehabilitated and therefore, due to a large carbon store in peat, are converted from a carbon store to a CO₂ emission source. The CAP pre-accession program, SAPARD (Special Accession Program for Agriculture and Rural Development), was launched in Estonia and several subsidies were available for local farmers. Some of these were used for the development and continuation of berry cultivation.

In Estonia, lowbush blueberry is developing into a promising horticultural crop for small berry growers and efforts have been made to maintain lowbush blueberry in the different regions of the country. In 2005 the Estonian Agricultural Registers and Information Board (ARIB) collected more than 66 ha of submitted supports for blueberry plantations, each of which did not exceed an average of 0.8 ha in size. Blueberry
cultivation areas have increased rapidly (Noormets et al. 2003). As in North America, mineral soils as well as poorly decomposed peat soils are used for blueberry cultivation in Estonia. A number of experiments has been conducted to recultivate opencast peat pits with different plant species (Heinsalu et al. 1992). However, neither of them has shown major success over time in terms of profitability returns, due to high water levels, the poorly decomposed uppermost layer and the variable environment of the rhizosphere of peatlands (Tamoshaitiene et al. 1997). One possibility to use such abandoned areas is to recultivate them with species that are stress tolerant and whose natural growth habitat is similar to peatland plants. Therefore, it is reasonable to investigate the possibility of the recultivation of opencast peat pits with acidophilic ericaceous species. Some Vaccinium species have previously been used for cultivation on peat soils (Abolins and Gurtaja 2006, Stackeveliene et al. 1997, Noormets et al. 2003, Yakolev 2000).

Lowbush blueberry is a tetraploid, woody perennial plant and its root mass is high, accounting for 80—85% of the total dry mass of the plant (Kloet 1988). The bulk of the root system is located in the upper 10 cm topsoil layer. The organs of sexual reproduction are situated in the top of aerial shoots, which produce numerous pendulous, racemose inflorescences of variable length (Kloet 1988). Individual pendulous flowers are complete and pentacyclic with an urceolate perianth configuration. When fertilization occurs the plant produces true, fleshy berries whose colour ranges from light blue to black. The intensity of the colour depends on the wax layer and the surface colour is related to the quality of the berry (Kalt et al. 1995). The growth habitats of the species are soils poor in mineral nutrients and with a soil pH of 4.5 to 5.5 (Kloet 1988). The growth of both Vaccinium species is dependent on native mycohizal, which secure plant nutrient uptake (Eccher et al. 2006) that, in its turn, depend on cultural practice (Starast et al. 2006), primary nitrogen, phosphorus (Read and Stribley 1973, Stribley and Read 1974, Read and Kerley 1998) and iron (Mitchell and Read 1981, Shaw et al. 1990).

Based on previously cited literature we claim that it is possible to use the cutover peatlands is berry cultivation. Lowbush blueberry is suitable for this purpose, as it tolerates the specific pedological conditions of opencast peat pits. Due to land use changes, the abandoned peat excavation areas can be turned into profitable land resources. This knowledge is especially important for the Baltic States, where plenty of abandoned peat fields are standing for decades without vegetation (Orru and Paal 2007). The task of the current research is to explain fertilizer needs and cultivating profitability of lowbush blueberry on depleted peat fields. The cost-effectiveness of lowbush blueberry cultivation on Estonian cutover peat areas will be compared to that of half-highbush blueberry and the most popular berry crop, strawberry, in mineral soil.

Materials and methods

Experimental sites and soil conditions

In the current study, the term “peat area” refers to area that was abandoned after peat production without recultivation. The peat field is divided into smaller areas by drainage ditches measuring 1.5 m deep and 300 m long. An average peat field is 20 m x 300 m, with a flat and even surface without natural plant cover.

Experiment I (Exp. I) was conducted during 1999 to 2001 in the southern region of Estonia – in country Tartu (58° 22′ N, 26° 43′ E), Sapi-Luli bog. The experimental plantation was established in 1992. The second experiment (Exp. II) was conducted during 2004 to 2006 in the northwestern part of Estonia – in the county Harjumaa (59° 6’ N, 25° 22′ E) in Ardu bog. The plantation was established in 2000. According to the WRB soil classification, the soil of the both experimental areas belongs to the Fibri–Dystric Histosol soils subgroups of.

Experimental set-up

The gap between the rows was 1 m and plant-to-plant spacing was the same. Top dressing was applied only locally around the root system once in early spring every year. Only in Exp. I the influence of a water-soluble foliar fertilizer (N 1.4, Ca 1.8 kg ha-1) in a 0.5% solution was also tested. Lime (CaO + MgO, 67–71%) was used only in Exp. II in early spring in the planting year (2000) at a rate of 100 g m⁻². In the control variant, plants did not receive fertilizers. Experimental design was a randomized complete block in 3 replications and 15 plants per plot (21 m²). The amounts of fertilizers are expressed as nutrients applied in kg ha⁻¹ (Table 1).

Sampling and soil chemical analyses

For the current investigation the soil sampling was done in May in 1999 for Exp. I, and in 2004 for Exp. II (Table 2). Soils were described by digging pits and samples for soil analysis were taken from upper peat layer (0–20 cm) and air-dried in 3 replications. Dry matter content was determined by drying samples at 105 °C to a constant weight. Soil samples were analysed for organic C according to the Tjurin method (Chemical analysis of silt 1998). For direct estimation of organic matter content the loss-on-ignition (LOI)
Table 1. The used fertilizing treatments on experimental areas on cutover peatland plantations of lowbush blueberry

<table>
<thead>
<tr>
<th>Experimental area and treatments</th>
<th>N given per hectare (kg)</th>
<th>P</th>
<th>K</th>
<th>Ca</th>
<th>Mg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experiment I (1999–2001)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>NPK1</td>
<td>0.6</td>
<td>19</td>
<td>46</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>NPK1+FF</td>
<td>2</td>
<td>19</td>
<td>46</td>
<td>1.8</td>
<td>-</td>
</tr>
<tr>
<td>NPK2</td>
<td>23</td>
<td>29</td>
<td>58</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>NPK2+FF</td>
<td>24.4</td>
<td>29</td>
<td>58</td>
<td>1.8</td>
<td>-</td>
</tr>
<tr>
<td>FF</td>
<td>1.4</td>
<td>-</td>
<td>-</td>
<td>1.8</td>
<td>-</td>
</tr>
<tr>
<td>Experiment II (2004–2006)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>NPK1</td>
<td>8</td>
<td>20</td>
<td>72</td>
<td>16</td>
<td>10</td>
</tr>
<tr>
<td>NPK1+L</td>
<td>8</td>
<td>20</td>
<td>72</td>
<td>16</td>
<td>10</td>
</tr>
<tr>
<td>NPK2</td>
<td>6</td>
<td>6</td>
<td>19</td>
<td>4</td>
<td>12</td>
</tr>
<tr>
<td>NPK2+L</td>
<td>6</td>
<td>6</td>
<td>19</td>
<td>4</td>
<td>12</td>
</tr>
<tr>
<td>NPK3</td>
<td>14</td>
<td>5</td>
<td>21</td>
<td>-</td>
<td>5.6</td>
</tr>
<tr>
<td>NPK3+L</td>
<td>14</td>
<td>5</td>
<td>21</td>
<td>-</td>
<td>5.6</td>
</tr>
</tbody>
</table>

FF – Foliar fertilizing with water-soluble fertilizer (N1.4, Ca1.8 kg ha⁻¹) in a 0.5% solution
L – Lime (CaO + MgO) was used only in Exp. II in early spring in the planting year (2000) at a rate of 1000 kg ha⁻¹

Table 2. Nutrient content of the peat soil in different experimental plantations of lowbush blueberry

<table>
<thead>
<tr>
<th>Experimental area</th>
<th>N<sub>av</sub> %</th>
<th>P mg kg</th>
<th>K mg kg</th>
<th>Ca mg kg</th>
<th>Mg mg kg</th>
<th>Total C %</th>
<th>Ash %</th>
<th>pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experiment I</td>
<td>0.99</td>
<td>33</td>
<td>111</td>
<td>3641</td>
<td>436</td>
<td>42.8</td>
<td>3.6</td>
<td>2.8-4.0</td>
</tr>
<tr>
<td>Experiment II</td>
<td>1.06</td>
<td>56</td>
<td>292</td>
<td>1424</td>
<td>422</td>
<td>40.5</td>
<td>4.8</td>
<td>2.2</td>
</tr>
</tbody>
</table>

method was used (Methods of Soil analysis, 1996). The Kjeldahl method was used for the determination of N_{av} (Procedures of soil analysis, 1995). Available P, K, Ca and Mg were analysed according to the Mehlich-3 method (Soil analysis, 1998). The pH was measured from the soil suspension with 1M KCl (1:2,5 w/w) (Procedures of soil analysis, 1995).

Berries were picked once during the season and yield was measured in Exp. I from 1999 to 2001 and in Exp. II from 2004 to 2006. The yield from a single blueberry bush was weighed and expressed as g plant⁻¹ (in 3 replications and 15 plants per plot).

Statistical analysis

To study the influence of fertilizer on the yield, data were analysed by two-way analysis of variance; with the factors being A – years and B – fertilization. The means separated by the least significant difference (LSD) test and differences at P=0.05 considered statistically significant. The mean values to be compared are followed by the same letter if they are not significantly different (Figure 1, 2).

![Figure 1](image1.png)

Figure 1. The yield of lowbush blueberry plants in experiment I influenced by year and fertilization. **Explanations of fertilizing treatments are in Table 1.** The means followed by different letters of the same colour are significantly different at P≤0.05

![Figure 2](image2.png)

Figure 2. The yield of lowbush blueberry plants in experiment II influenced by year and fertilization. **Explanations of fertilizing treatments are in Table 1.** The means followed by different letters of the same colour are significantly different at P≤0.05

Meteorological conditions

The experimental year 1999 was characterized by a warmer spring than usual, accompanied by a precipitation deficit in July and August (Table 3). Moreover, in the September of 1999, the average temperature was particularly warm for this region. A warm and long fall with an unexpectedly high amount of precipitation in July characterized the year 2000. In July 2001, recorded temperatures were extremely high, as was the amount of precipitation in April and in summer (June to August). In 2004 May was colder than usual. In the middle of the month, during the lowbush blueberry blooming severe night frosts occurred. The second part of summer (August, September) was cooler, accompanied with lower precipitation amounts. The summers in 2005 and 2006 (June to September) were extremely warm and had low amounts of precipitation.
Table 3. Weather conditions in 1999 to 2006 as compared to the same figures of many years (1966-1998) in Estonia

<table>
<thead>
<tr>
<th>Year</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
<th>VII</th>
<th>VIII</th>
<th>IX</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>1999</td>
<td>29</td>
<td>26</td>
<td>56</td>
<td>21</td>
<td>36</td>
<td>43</td>
<td>52</td>
</tr>
<tr>
<td>2000</td>
<td>23</td>
<td>52</td>
<td>62</td>
<td>118</td>
<td>72</td>
<td>62</td>
<td>71</td>
</tr>
<tr>
<td>2001</td>
<td>52</td>
<td>49</td>
<td>86</td>
<td>111</td>
<td>127</td>
<td>58</td>
<td>79</td>
</tr>
<tr>
<td>2002</td>
<td>20</td>
<td>15</td>
<td>81</td>
<td>45</td>
<td>22</td>
<td>21</td>
<td>41</td>
</tr>
<tr>
<td>2003</td>
<td>37</td>
<td>105</td>
<td>59</td>
<td>88</td>
<td>109</td>
<td>18</td>
<td>39</td>
</tr>
<tr>
<td>2004</td>
<td>18</td>
<td>30</td>
<td>80</td>
<td>266</td>
<td>57</td>
<td>103</td>
<td>91</td>
</tr>
<tr>
<td>2005</td>
<td>22</td>
<td>114</td>
<td>54</td>
<td>22</td>
<td>92</td>
<td>59</td>
<td>38</td>
</tr>
<tr>
<td>2006</td>
<td>14</td>
<td>34</td>
<td>47</td>
<td>13</td>
<td>84</td>
<td>37</td>
<td>66</td>
</tr>
<tr>
<td>1966-1998</td>
<td>35</td>
<td>55</td>
<td>66</td>
<td>72</td>
<td>79</td>
<td>66</td>
<td>56</td>
</tr>
</tbody>
</table>

Average air temperature (°C)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>12</td>
<td>8</td>
<td></td>
<td></td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>19</td>
<td>14</td>
<td>18</td>
<td></td>
<td></td>
<td>12</td>
<td>15</td>
<td>17</td>
<td>14</td>
<td>18</td>
</tr>
<tr>
<td>19</td>
<td>18</td>
<td>20</td>
<td></td>
<td></td>
<td>17</td>
<td>15</td>
<td>17</td>
<td>14</td>
<td>18</td>
</tr>
<tr>
<td>13</td>
<td>20</td>
<td>21</td>
<td></td>
<td></td>
<td>15</td>
<td>17</td>
<td>17</td>
<td>14</td>
<td>18</td>
</tr>
<tr>
<td>13</td>
<td>17</td>
<td>17</td>
<td></td>
<td></td>
<td>15</td>
<td>17</td>
<td>17</td>
<td>14</td>
<td>18</td>
</tr>
<tr>
<td>13</td>
<td>16</td>
<td>19</td>
<td></td>
<td></td>
<td>17</td>
<td>15</td>
<td>17</td>
<td>14</td>
<td>18</td>
</tr>
<tr>
<td>8</td>
<td>12</td>
<td>15</td>
<td></td>
<td></td>
<td>16</td>
<td>17</td>
<td>16</td>
<td>10</td>
<td>6</td>
</tr>
</tbody>
</table>

The winter in 2006 was very frosty; at the end of January and the beginning of February the temperature was below -25 °C for an extended period of time.

Economic questionnaire

The aim of the questionnaire was to obtain economic data that would make it possible to determine the cost-effectiveness of strawberry and blueberry cultivation in Estonia. Farmers with plantations of 0.4–13 ha for strawberry and 0.5–2.5 ha for half-high blueberry and lowbush blueberry cultivation were included in the survey. Berry growers were sent fill-in forms on which they had to indicate all their expenses on establishing the plantation, harvesting and marketing. The present economic study is based on the mean data of 2004-2005, collected from the Estonian berry growers. The analysis was compiled on the basis of data from 32 strawberry and 6 blueberry growers.

Economic analysis

To confirm the hypothesis calculations were made regarding the production and experimental data of lowbush blueberry cultivation. The data obtained were compared with the respective data from the cultivation of other berries. The objective of the present analysis is to estimate the cost-effectiveness of lowbush blueberry cultivation based on the benefit-cost ratio. This kind of analyses has been used in the economic analysis of several other fruits (Güdömgus 2006, Demircan et al. 2006). The data submitted on the mean market price formed the basis for calculating the return on sales. Fixed costs have been calculated by dividing the establishment costs with plantation usage time. Maintenance costs, harvesting and marketing costs are included in the variable costs. Maintenance costs include the expenses on watering, fertilizing, weeding, pruning and chemicals. The production cost per kg was calculated by dividing the total cost of berry production per hectare by the berry yield per hectare. The profitability of berry cultivation has been calculated by dividing the profit from production by total expenses (fixed costs + variable expenses).

Results

Plant yield

In Exp. I, the yearly conditions influenced the yield significantly. In 2001 the yield was 79% higher than in 1999 (Figure 1). Among the fertilized variants, the lowest yield (275 g plant⁻¹) was recorded when only foliar fertilizer was applied. Compared with unfertilized plants, the fertilized plants in treatments NPK1 and NPK1+FF produced a 63% higher yield.

In Exp. II, the productiveness of four-, five- and six-year-old blueberries was equal (Figure 2). All fertilized blueberries produced a significantly higher yield, as compared with unfertilized plants. The plants in treatments NPK1, NPK1+L and NPK2 were more productive. Unfertilized plants produced an average of three years only 27 g berries per bush, but the yield from fertilized plants varied from 227 to 339 g plant⁻¹.

Economic analysis

According to the analysis the mean yield of half-highbush blueberry per hectare was 3,500 kg and that of strawberry 4,400 kg (kg ha⁻¹). As for lowbush blueberry, the mean yield from the bush – 363 g bush⁻¹ (Figure 1 and Figure 2) - of the 2–7 fertilization trial of 1999–2006 was equalized with the yield per hectare, which according to the 1m x 1m planting scheme, constitutes 3,630 kg ha⁻¹. The yield of blueberry plantations is not very high as the plantations are young and the crop capacity still low. Economic aspects of berry cultivation were summarized in Table 4.

In Estonia, most of the berries are sold fresh on the markets and in the shops, but many are also sold to the purchasing agents and industries. The survey showed that in 2004-2005 the price of strawberries was 54% lower than that of half-highbush blueberry and 36% lower than that of lowbush blueberry (Table 4). The survey showed that the selling price of blueberries was relatively low. A few half-highbush blueberry cultivators sold their products for 5 EUR kg⁻¹.
Table 4. Economic analysis of strawberry, half-highbush and lowbush blueberry

<table>
<thead>
<tr>
<th>Cost and return components</th>
<th>Strawberry</th>
<th>Half-highbush blueberry in mineral soil</th>
<th>Lowbush blueberry on exhausted milled peat area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yield (kg ha⁻¹)</td>
<td>4400</td>
<td>2220</td>
<td>3630</td>
</tr>
<tr>
<td>Sale price (EUR kg⁻¹)</td>
<td>1.6</td>
<td>3.5</td>
<td>2.5</td>
</tr>
<tr>
<td>Costs for establishing plantation (EUR ha⁻¹)</td>
<td>7101</td>
<td>11805</td>
<td>8008</td>
</tr>
<tr>
<td>Plantation usage time (year)</td>
<td>4</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>Fixed costs (EUR ha⁻¹)</td>
<td>1775</td>
<td>394</td>
<td>267</td>
</tr>
<tr>
<td>Variable costs (EUR ha⁻¹)</td>
<td>3148</td>
<td>2521</td>
<td>2509</td>
</tr>
<tr>
<td>Total costs (EUR ha⁻¹)</td>
<td>4923</td>
<td>2915</td>
<td>2776</td>
</tr>
<tr>
<td>Production cost (EUR kg⁻¹)</td>
<td>1.12</td>
<td>1.3</td>
<td>0.76</td>
</tr>
<tr>
<td>Profit (EUR ha⁻¹)</td>
<td>2117</td>
<td>4855</td>
<td>6299</td>
</tr>
<tr>
<td>Benefit-cost ratio (%)</td>
<td>43</td>
<td>166</td>
<td>227</td>
</tr>
</tbody>
</table>

For the berries sold on Estonian markets, the price of strawberries fluctuated the most. In 2005 the price of strawberries at the beginning of the season was on the average 7.67 EUR kg⁻¹, while in 2004 it was only 6.39 EUR kg⁻¹. Following the daily dynamics of the market price, it can be seen that the price changes very quickly (Figure 3). The lowest price during the harvest season in 2004 was 0.96 EUR kg⁻¹. The mean market price for strawberries in 2004 was 2.16 EUR kg⁻¹, and 2.38 EUR kg⁻¹ in 2005.

The market price of cultivated blueberries includes that of bilberries too. As the kilogram price of bilberry is lower than that of cultivated blueberry, bilberry prices lowered the mean price. Large differences in selling price are explained by the size of berries and their quality, marketing opportunities, as well as the clientele. The price of cultivated blueberries remained in the same price bracket of 4.47–6.39 EUR kg⁻¹ in 2004–2005. There are, however, producers who sell blueberries at the same price or even cheaper than bilberries. The data from the survey showed that cultivated blueberries were also marketed at 1.92 EUR kg⁻¹. In 2004 one could buy bilberries for an average of 2.3–2.43 EUR kg⁻¹ at the market.

The total cost per hectare for lowbush blueberry growing on exhausted milled peat areas was 2776 EUR ha⁻¹, for half-highbush blueberry 2,915 EUR ha⁻¹ and the highest total cost in berry growing was calculated for strawberry grown on mineral soil - 4,923 EUR ha⁻¹. The calculations revealed that the production cost for strawberries was 1.12 EUR kg⁻¹, for half-highbush blueberries grown on mineral soil 1.3 EUR kg⁻¹, while the production cost for lowbush blueberries grown on exhausted milled peat areas, was significantly lower at 0.76 EUR kg⁻¹. As a result of the analysis it can be said that lowbush blueberry growing was the most profitable (6,299 EUR ha⁻¹) compared with strawberry growing; the profit per hectare was 3 times higher.

The benefit-cost ratio shows that in strawberry cultivation every euro spent returned 0.43 EUR, in half-highbush blueberry cultivation 1.66 EUR and in lowbush blueberry cultivation, which according to the analysis is the most profitable, 2.27 EUR.

Discussion

Plant yield

In the years of the experiments, the weather had an impact on the yield of blueberry plants only in Exp 1 in 1999. The very low yield was caused by the late night frosts that damaged the blooms. Fertilization had significant impact on the results of the experiments, but the limiting had no significant effect. For blueberry cultivation, the optimal soil pH(0) is 4.5–5.5 (Kloet 1988, Paasissalo et al. 1994). In experimental fields the soil was considerably more acidic; pH(0) of 2.2–4.0. Lime was used with aim to change the soil pH to be more suitable for blueberries. The addition of lime, however, did not increase the yield – in some experimental variants, the use of lime even decreased productivity. As during the years of the experiments the previously used liming had no impact on pH (average pH of the test plot was 2.2), it did not impact the yield. From these we can assume that blueberries can grow on highly acidic soils and be productive, even though the soil pH is very low. In the blueberry cultivation the gypsum (with agricultural grade Ca=23.2%; S=18.6%) is also used to change the pH of the soil and its use increased the blueberry yield by 47% (Sanderson et al. 1996). The significant
effect appeared only in the beginning of the experiment and not in the following years. It can be concluded that in the future experiments it is necessary to study the effect of the repeated liming.

In a nutrient-poor environment, as in an ombro
trophic peat bog, fertilization plays an important role in the growth of plants. The fertilization increased the yield from 3 the 8 times. Only a few experiments have been conducted with blueberries in peat soil conditions. Necessity of fertilizing has come out even with trials on mineral soils, where nutrient elements composition is suitable for blueberry. A significant positive influence of NPK fertilization on yield was found in different places in Estonia, where the yield from bush was 41 to 336 g higher compared to the non-fertilized plants (Starast et al. 2007).

In Exp 1, where the fertilizers nitrogen contents differences were larger, the nitrogen had significant effect on the yield: the fertilizers with low nitrogen had significantly more positive impact on the yield. Moreover, smaller doses of nitrogen fertilization are preferred, due to the late autumn growth period. If fertilizers are applied too late, the uppermost parts of young shoots will be damaged by frost (Paal et al. 2004).

The yield of the following year will thus be damaged as the flower buds develop in the upper part of shoots. Moreover, this study showed that the application of foliar fertilizers in the form of Ca(NO₃)₂ did not supply plants with enough nutrients for yield formation. Therefore, foliar fertilization on peat soils should be used as an additional source of nutrients rather than the main fertilizer application.

The results obtained showed that the local application of top dressings created favorable conditions for higher yields, despite the fact that the pH range in the experimental plots was significantly lower than the favorable pH range for the growth of lowbush blueberry.

Economic analysis

The economic analysis showed that among the cultures used for economic questionnaire survey, lowbush blueberry cultivation on exhausted milled peat areas turned out the most profitable. The differences in profitability were caused mainly by the specific pedoecological conditions of exhausted milled peat areas. This in turn was due to the different costs for establishment, and the differences in fixed and variable costs. In addition, the current market prices were in direct connection to profitability. The income from selling berries depends first and foremost on the yield, which is determined by the crop capacity of the cultivar grown, as well as climatic conditions and the technology used. The market price of strawberries changes very quickly. This can be explained by the fact that at the beginning of the season the demand for strawberries is out of proportion with supply and this keeps the prices high. Within a few days the number of berry salesmen increases and the price of berries decreases. Blueberry is a comparatively new crop and, due to the competition-free market the price remains relatively stable throughout the marketing period. The consumer survey that covered 449 respondents showed that blueberry was a new crop and many consumers were not aware such berries existed and therefore did not ask for the berries at the market. At the same time the consumers liked the new and good taste of the berries and they would like to consume more.

The analysis showed that plantation establishment costs constitute the biggest share of the total costs. To calculate the fixed cost, the establishment cost was divided by plantation usage time. Based on earlier studies on strawberry plantations and questionnaire responses, costs were calculated for a 4-year period. The survey research showed that producers do indeed re-establish strawberry plantations every four years. Moreover, the earlier experimental works have shown that strawberry cultivation is economically profitable for 4–5 years (Värnik et al. 2000b). The plantation usage time of blueberry plantations is set at 30 years, although literature sources claim that the predicted life expectancy of blueberry plantations can extend to over 60 years (Hiiralsalmi 1989). Estonia lacks long-term blueberry cultivation experience, therefore usage over a long time could not be surveyed. Half-highbush blueberry plantation establishment costs were 32% higher than those of lowbush blueberry.

The big difference in foundation cost derives from the different growing technologies applied. 90% of Estonian producers grow strawberries on dual rows with plastic mulch. This is the reason why the current study focuses mainly on this production technique. The experiments conducted in strawberry cultivation in Estonia have shown that this technique suits the growing conditions in Estonia (Moor et al. 2004). Half-highbush blueberry is produced on peat beds in mineral soil that have been covered with plastic mulch. The experiments carried out in Estonia show that this technology best suits Estonian conditions (Starast et al. 2002). Lowbush blueberry is grown on mill-peat areas where mulches are not used. The usage of plastic mulch has a significant influence on the economic analysis as it increases the total costs.

Half-highbush blueberry plantations are established on mineral soil. To do that, peat must be used as blueberry grows well in acidic soil conditions. Cultivated blueberries are sensitive to over-moisture, but to get a good crop, blueberry must be sufficiently watered (Lareau 1989). In order to prevent the peat from
drying, irrigation systems must be used in blueberry plantations established on mineral soils. In addition to the cost of irrigation systems, the survey showed that half-highbush blueberry plants are 20% more expensive than lowbush blueberry plants. It is possible to cut the cost of plants by growing the plants oneself (Väärnik et al. 2000a).

Fertilization costs constitute the greatest part of the maintenance cost. Fertilizer consumption depends on the fertilization need, the fertilizer used and fertilizing equipment. The fertilising costs of strawberries and half-highbush blueberries have been calculated as a mean of the responses obtained in the survey. In the strawberry production, the calculations on fertilizers have been based on fertilizers NPK (6:14:23) and NPK (14:11:25) and the average amount of 190 kg ha$^{-1}$. As for lowbush blueberry, fertilization costs were calculated on the basis of experimental data from 1999—2006, and only top dressing fertilization was taken into account. As leaf-fertilization and liming did not have a significant effect, they were excluded from the economic analysis.

As a result of the analysis it can be concluded that the cultivation of lowbush blueberries on peat-fields is cheaper, for there is no need for weed control on peat-fields as acidic soil conditions in the bog impede the spread of weeds. Mowing between the roads is an additional cost in both strawberry and half-highbush blueberry plantations.

The problem for the berry cultivators is the cost of labour, as both berries and plants are sensitive to mechanical damage. In Estonia there is no special equipment available for harvesting. Harvesting is therefore done manually, which takes more time and is more - labour-intensive and expensive than mechanical harvesting. Experiments conducted on blueberry cultivation in Canada have shown that mechanical harvesting is 45% cheaper than hand harvesting (Sibley 1994). In 2004 in strawberry plantations in Estonia pickers were paid 0.22—0.26 EUR kg$^{-1}$, while pickers in Finland received 0.77 EUR kg$^{-1}$ on average (Koivist 2005), which is three times more than in Estonia. The survey showed that in 2004 blueberry pickers in Estonia received 0.51 EUR kg$^{-1}$. A decrease in the labour costs and the longer-term employment of staff on a plantation can be achieved by growing different berry crops. Growing blueberry on 5 ha and strawberry on 3 ha makes it possible to guarantee a small family (2 employees) work amounting to approximately 18000 hours during the six months of the growing and harvesting periods (Väärnik et al. 2003). Performing different operations in establishing the plantations and planting in different seasons makes it possible to diversify the type of work and increase the labour requirements. Harvesting of these crops does not coincide and therefore employment can be extended over a longer period of time. In order to guarantee full employment, the plantation owner should find additional sources of income either from farm tourism, handicraft, processing berries or their marketing.

These results and their influencing factors are applicable in Estonia. For example, analyses conducted in berry cultivation in Germany have shown that the payback period (10—12 years) is very long for blueberry cultivation (Schmidt and Maack 2003). Väärnik et al. (2002) however, found that in Estonia, blueberry cultivation payback period is 6—7 years. This shows that economic analysis is influenced by specific economic conditions, the price level of berries, the price of planting material used and the wages of seasonal workers. Finally, we can conclude that the results show that the cultivation of lowbush blueberry on exhausted mineral peat lands is possible and economically profitable.

Acknowledgements

This project was part of the Estonian Canadian project of "Commercialization of Agricultural Production in Estonia", funded partly by the Canadian International Developmental Agency. For use of and help with experimental fields, we thank farmers T. Jaadla, K. Pöld and T. Oks. This study was financially supported by the Estonian Science Foundation (Projects 4726, 6046 and 6037) and by Enterprise Estonia.

References

Received 17 November 2008
Accepted 18 June 2010
ВЫРАЩИВАНИЕ ЯГОДНИКОВ НА ПУСТУЮЩИХ ВЫРАБОТАНЫХ ТОРФЯНИКАХ В ЭСТОНИИ: СЕЛЬСКОХОЗЯЙСТВЕННЫЕ И ЭКОНОМИЧЕСКИЕ АСПЕКТЫ

К. Вахейъэ, Т. Альберт, М. Ноорметс, К. Карп, Т. Пааль, М. Стараст и Р. Вярник

Резюме

Исследование было проведено для определения возможностей использования выработанных фрезерных торфяников в условиях изменения землепользования. В проведенных экспериментах выявили пригодность бывшего лесного болота после добычи торфа для выращивания гольбики узколистной (Vaccinium angustifolium). Культивирование дикоросых ягод на таких площадях является довольно новой ветвью сельскохозяйственной отрасли. Так как данных о питательных потребностях гольбики на выработанных торфяниках по-прежнему недостаточно, было проведено пробное изучение урожайности субстрата. В исследовании урожайность использовалась как агротехнический индикатор для оценки эффективности использования торфяных почв. Для оценки рентабельности выращивания гольбики, было использован коэффициент рентабельности. Был проведен сбор данных о расходах на создание, уход и содержание плантаций, а также на заготовку и сбыт урожая. Целью исследования было определить, является ли выращивание гольбики узколистной на открытых торфяных карьерах столь же прибыльным, как культивирование гольбики высокорослой (Vaccinium angustifolium x Vaccinium corymbosum) и клубники (Fragaria x ananassa) на минеральных почвах. Кроме того, были рассмотрены возможности улучшения землепользования путем превращения заброшенных торфяников в прибыльные земельные ресурсы. Было установлено, что удобрение гольбики узколистной на торфяниках увеличивает урожайность от 200 до 535 г на растение. Экономический анализ показал, что рентабельность гольбики узколистной на фрезерных торфяниках была 227%, а рентабельность гольбики высокорослой и клубники, выращиваемой на минеральной почве, была значительно ниже - 116% и 43% соответственно. Самую высокую прибыль получили от выращивания гольбики узколистной на фрезерных торфяниках - 6299 EUR га⁻¹, в то же время от клубники на минеральной почве только 2117 EUR га⁻¹. Прибыль от гольбики высокорослой на минеральной почве была 4855 EUR га⁻¹. В итоге можно сделать вывод, что культивирование гольбики узколистной позволяет взять в использование исчерпанные фрезерные торфяники, а выращивание гольбики узколистной на этих полях является экономически даё более выгодным, чем выращивание клубники на минеральной почве.

Ключевые слова: Vaccinium angustifolium, использование торфяников, выработка торфа, удобрение, урожай, экономический анализ, коэффициент рентабельности